Novel natural ligands for Drosophila olfactory receptor neurones.

نویسندگان

  • Marcus C Stensmyr
  • Elena Giordano
  • Annalisa Balloi
  • Anna-Maria Angioy
  • Bill S Hansson
چکیده

Due to its well-defined genome, the fruitfly Drosophila melanogaster has become a very important model organism in olfactory research. Despite all the research invested, few natural odour ligands have been identified. By using a combined gas chromatographic-single receptor neurone recording technique (GC-SC), we set out to identify active odour molecules in head space-collected volatiles from preferred food sources, i.e. different overripe or rotting fruit. In total, we performed 101 GC-SC experiments on 85 contacted sensilla. Using GC-mass spectrometry, we identified 24 active compounds. Synthetic samples of these compounds were used to establish dose-response curves for several of the receptor neurone types encountered. The response patterns of individual neurones were repeatable, and neurones were found to reside in stereotyped pairs. In total, we identified eight distinct sensillum types based on response profiles of 12 olfactory receptor neurone types. In most recordings, a single GC peak would produce a strong response, whereas a few other, often chemically related, compounds would produce weaker responses. The GC-SC recordings revealed that the olfactory receptor neurones investigated were often selective and could be divided into distinct functional types with discrete characteristics. Dose-response investigations revealed very low response thresholds to the tested compounds. Six of the novel ligands were also tested for their behavioural effect in a T-maze set up. Of these, five elicited attraction and one elicited repulsion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction

The vinegar fly Drosophila melanogaster is equipped with two peripheral olfactory organs, antenna and maxillary palp. The antenna is involved in finding food, oviposition sites and mates. However, the functional significance of the maxillary palp remained unknown. Here, we screened the olfactory sensory neurons of the maxillary palp (MP-OSNs) using a large number of natural odor extracts to ide...

متن کامل

Neuroethology of Olfaction in Drosophila Evolution and Specialization

In insects olfaction is a primary sensory modality. As a result changes in the animal’s ecology are often paralleled by modifications in the olfactory system. Using a comparative approach between the generalist Drosophila melanogaster and its sibling specialist D. sechellia, I looked at the coding properties of the olfactory system. Using electrophysiology, neuroanatomy, and behavioral assays w...

متن کامل

Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity

Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR). It is well known that insects are exposed to a plethora of odor molecules that vary widely in both space and time under turbulent natural conditions. In addition to divergent ligand specificities, these ...

متن کامل

High-Potency Olfactory Receptor Agonists Discovered by Virtual High-Throughput Screening: Molecular Probes for Receptor Structure and Olfactory Function

The detection of diverse chemical structures by the vertebrate olfactory system is accomplished by the recognition of odorous ligands by their cognate receptors. In the present study, we used computational screening to discover novel high-affinity agonists of an olfactory G protein-coupled receptor that recognizes amino acid ligands. Functional testing of the top candidates validated several ag...

متن کامل

Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons

Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2003